Consistency Based Feature Selection
نویسندگان
چکیده
Feature selection is an e ective technique in dealing with dimensionality reduction for classi cation task a main component of data mining It searches for an optimal subset of features The search strategies under consideration are one of the three complete heuristic and probabilistic Existing algorithms adopt various measures to evaluate the goodness of feature subsets This work focuses on one measure called consistency We study its properties in comparison with other major measures and di erent ways of using this measure in search of feature subsets We conduct an empirical study to examine the pros and cons of these di erent search methods using consistency Through this extensive exercise we aim to provide a comprehensive view of this measure and its relations with other measures and a guideline of the use of this measure with di erent search strategies facing a new application
منابع مشابه
Consistency Measures for Feature Selection: A Formal Definition, Relative Sensitivity Comparison, and a Fast Algorithm
Consistency-based feature selection is an important category of feature selection research yet is defined only intuitively in the literature. First, we formally define a consistency measure, and then using this definition, evaluate 19 feature selection measures from the literature. While only 5 of these were labeled as consistency measures by their original authors, by our definition, an additi...
متن کاملIFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF
Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...
متن کاملFeature Selection Based on Information Theory, Consistency and Separability Indices
Two new feature selection methods are introduced, the first based on separability criterion, the second on consistency index that includes interactions between the selected subsets of features. Comparison of accuracy was made against information-theory based selection methods on several datasets training neurofuzzy and nearest neighbor methods on various subsets of selected features. Methods ba...
متن کاملFeature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کامل